Project for ClimateHack.AI 2023-24 in collaboration with Open Climate Fix.

Accomplishments

  • Top 3 Submission from the University of Toronto
  • Represented the University of Toronto at the International Finals at Harvard
    • Finished 5th place overall, beating out teams such as CMU, Harvard, UIUC, etc

You can view the slides we used for the presentation here: Climate Hack 2023 Final.pdf

Challenge

ClimateHack.AI 2024

Motivation

  • Electricity system operators ensure in real time that electricity can always be supplied to meet demand and prevent blackouts, but intermittent renewable energy sources, such as solar and wind, introduce significant uncertainty into the grid’s power generation forecasts.
  • To account for this uncertainty, electricity system operators maintain a spinning reserve based on non-renewable energy sources (e.g. natural gas) that can quickly ramp up to meet any shortfalls.
  • More accurate near-term solar power generation forecasts would allow grid operators to reduce this use of non-renewables and cut emissions by up to 100 kilotonnes per year in Great Britain and on the order of 50 megatonnes per year worldwide by 2030.

Challenge

Dataset

Most important features

  • Weather:
    • Diffusive shortwave radiation (aswdifd_s)
    • Direct shortwave radiation (aswdir_s)
    • Cloud cover (%)
      • High cloud cover (clch)
      • Medium cloud cover (clcm)
      • Total cloud cover (clct)
    • Relative humidity (%) at 2 meters (relhum_2m)
  • Time:
    • Only evaluated between sunrise and sunset

Embeddings

import torch
from torch import nn
import math
 
class SinusoidalEmbedding(nn.Module):
    def __init__(self, freqs):
        super().__init__()
        self.register_buffer("freqs", freqs)
 
    def forward(self, input):
        if input.shape[-1] != 1 or (input.ndim == 1 and input.shape[0] == 1): # otherwise crashes when B=1
            input = input.unsqueeze(-1)
        emb = input.float() * self.freqs
        emb = torch.cat([emb.sin(), emb.cos()], dim=-1)
        if emb.ndim == 2:
            emb = emb.unsqueeze(1)
        return emb
class FourierEmbedding(SinusoidalEmbedding):
    def __init__(self, embedding_dim, period=1):
        assert embedding_dim % 2 == 0
        half_dim = embedding_dim // 2
        # freqs = 2 * torch.pi * torch.arange(half_dim)
        freqs = 2*torch.pi / period * 2**torch.arange(half_dim)
        super().__init__(freqs)

TimeEmbedding class is used to embed time-related features (month and hour) using Fourier embeddings. This helps the model capture periodic patterns in the data.

class TimeEmbedding(nn.Module):
    def __init__(self, month_emb_dim = 16, hour_emb_dim = 16):
        super().__init__()
        self.month_emb = FourierEmbedding(month_emb_dim, 1.)
        self.hour_emb = FourierEmbedding(hour_emb_dim, 24.)
    
    def forward(self, time):
        # (B, 2)
        return torch.cat([self.month_emb(time[:, 0]), self.hour_emb(time[:, 1])], axis=-1)

Model

Our model is an Long Short-Term Memory (LSTM) encoder-decoder architecture

class BaseLSTM(nn.Module):
    def __init__(self, enc_model, dec_model, inp_emb, dropout=0.2, **kwargs):
        # Initialize the parent class
        super().__init__()
        self.enc_model = enc_model  # Encoder model
        self.dec_model = dec_model  # Decoder model
        self.inp_emb = inp_emb  # Input embedding layers
        # Determine which features to use based on kwargs
        self.used = [kwargs.get(f'use_{k.replace("-", "_")}', True) for k in ['pv', 'satellite-hrv', 'satellite-nonhrv', 'aerosols', 'weather', 'time', 'site']]
        self.dropout = nn.Dropout(p=dropout)  # Dropout layer for regularization
 
    def emb_input(self, features):
        # Extract the PV feature and other features
        pv, *features, index = features
        # Apply the corresponding embedding to each feature and return the embedded features along with the index
        return (pv, *[emb(feat) for feat, emb in zip(features, self.inp_emb)], index)
 
    def start_input_state(self, features, index):
        raise NotImplementedError
 
    def next_input_state(self, i, out, features, index, target=None):
        raise NotImplementedError
 
    def output_state(self, i, out, last_out, prediction=False):
        # This method should be implemented by subclasses to define the output state
        raise NotImplementedError
 
    def forward(self, features, target, criterion):
        # Embed the input features
        *features_emb, index = self.emb_input(features)
        # Get the initial hidden state from the encoder
        _, tup = self.enc_model(self.dropout(self.start_input_state(features_emb, index)))
        # Initialize the last output with padding
        last_out = F.pad(features[0][:, -1, None], (0, self.dec_model.proj_size - 1), 'constant', 0)
        loss = 0
        # Iterate over the sequence length (48 time steps)
        for i in range(48):
            # Get the output and hidden state from the decoder
            out, tup = self.dec_model(self.dropout(self.next_input_state(i, last_out, features_emb, index, target)), tup)
            # Get the final output state
            out = self.output_state(i, out, last_out)
            loss += criterion(out.squeeze(-1), target[:, i].squeeze(-1))
            # Update the last output
            last_out = out
        # Return the average loss
        return loss / 48
 
    def predict(self, features):
        # Get the batch size, device, and dtype from the features
        batch_size = features[0].shape[0]
        device = features[0].device
        dtype = features[0].dtype
 
        # Embed the input features
        *features_emb, index = self.emb_input(features)
        # Get the initial hidden state from the encoder
        _, tup = self.enc_model(self.dropout(self.start_input_state(features_emb, index)))
        # Initialize the last output with padding
        last_out = F.pad(features[0][:, -1, None], (0, self.dec_model.proj_size - 1), 'constant', 0)
 
        # Initialize an empty tensor to store predictions
        predictions = torch.empty(batch_size, 0, self.dec_model.proj_size, dtype=dtype, device=device)
        # Iterate over the sequence length (48 time steps)
        for i in range(48):
            # Get the output and hidden state from the decoder
            out, tup = self.dec_model(self.dropout(self.next_input_state(i, last_out, features_emb, index)), tup)
            # Get the final output state
            last_out = self.output_state(i, out, last_out, prediction=True)
            # Append the output to the predictions tensor
            predictions = torch.cat([predictions, last_out.unsqueeze(1)], axis=1)
        # Rearrange the predictions tensor and return it
        return rearrange(predictions, 'b t d -> d b t').squeeze(0)

Full LSTM Model:

class FullLSTM(BaseLSTM):
    def __init__(self, weather_features=None,
                       share_weights=False,
                       hidden_dim=512,
                       time_emb_dim=16,
                       site_emb_dim=30,
                       weather_emb_dim=64,
                       norm_type='batch',
                       pos_emb_dim=16,
                       wmo_emb_dim=16,
                       dropout=0.2,
                       time_emb_method='fourier',
                       pos_emb_method='learned',
                       inc_last=True,
                       teacher_forcing=False,
                       **kwargs):  # uncertainty, model_diff, truncated
 
        nn.Module.__init__(self)
 
        # Determine if the last output should be included in the input
        self.inc_last = inc_last or share_weights
        total_emb_dim = int(self.inc_last)
 
        self.teacher_forcing = teacher_forcing
 
        ####### TIME EMBEDDING ########
        self.time_emb = nn.Identity()
        if kwargs['use_time']:
            if time_emb_method == 'fourier':
                # Use Fourier embeddings for time features
                self.time_emb = TimeEmbedding(time_emb_dim // 2, time_emb_dim // 2)
            elif time_emb_method == 'learned':
                # Use learned embeddings for time features
                self.time_emb = nn.Linear(12 + 31 + 24, time_emb_dim)
            total_emb_dim += time_emb_dim
 
        ####### WEATHER EMBEDDING ########
        self.weather_emb_layer = nn.Identity()
        if kwargs['use_weather']:
            self.uses_wmo = 'ww' in weather_features
            weather_features = [x for x in weather_features if x != 'ww']
 
            if norm_type == 'batch':
                # Use batch normalization for weather features
                norm_layer = nn.Sequential(
                    Rearrange('b t c h w -> (b t) c h w'),
                    nn.BatchNorm2d(len(weather_features)),
                    Rearrange('(b t) c h w -> b t c h w', t=6),
                )
            if norm_type == 'global':
                # Use global normalization for weather features
                norm_layer = normalize_weather_layer(weather_features)
            
            self.weather_emb_layer = nn.Sequential(
                norm_layer,
                nn.Flatten(start_dim=2),
                nn.Linear((len(weather_features)) * WEATHER_SIZE ** 2, weather_emb_dim),
            )
            total_emb_dim += weather_emb_dim
            if self.uses_wmo:
                print('USES WMO')
                self.wmo_emb_layer = nn.Embedding(100, wmo_emb_dim)
                total_emb_dim += wmo_emb_dim
 
        ####### SITE EMBEDDING ########
        self.site_emb = nn.Identity()
        if kwargs['use_site']:
            # Use embeddings for site features
            self.site_emb = nn.Embedding(993, site_emb_dim)
            total_emb_dim += site_emb_dim
        
        ####### POS EMBEDDING ########
        if pos_emb_method == 'learned':
            # Use learned positional embeddings
            self.pos_emb = nn.Embedding(60, pos_emb_dim)
        elif pos_emb_method == 'fourier':
            # Use Fourier positional embeddings
            self.pos_emb = PositionalEmbedding(pos_emb_dim)
        elif pos_emb_method == 'none':
            # Use zero positional embeddings
            self.pos_emb = lambda x: torch.zeros(tuple(x.shape) + (1,) * (x.ndim == 1) + (0,), dtype=x.dtype, device=x.device)
            total_emb_dim -= pos_emb_dim
        
        total_emb_dim += pos_emb_dim    
 
        # Determine if uncertainty should be included in the model
        uncertainty = kwargs['distribution'] != "none"
 
        # Initialize the encoder LSTM
        encoder = nn.LSTM(total_emb_dim - inc_last + 1, hidden_dim, proj_size=1 + uncertainty, batch_first=True)
        if share_weights:
            # Share weights between encoder and decoder
            decoder = encoder
        else:
            # Initialize the decoder LSTM
            decoder = nn.LSTM(total_emb_dim, hidden_dim, proj_size=1 + uncertainty, batch_first=True)
 
        super().__init__(encoder, decoder, [self.weather_emb, self.time_emb], dropout=dropout, **kwargs)
 
        self.kwargs = kwargs
        # Initialize the predictor based on the distribution type
        self.predictor = (TruncEM if self.kwargs['truncated'] else NormEM)(**self.kwargs)
 
    def weather_emb(self, feature):
        # Process weather features through the weather embedding layer
        if self.uses_wmo:
            emb = self.weather_emb_layer(feature[:, :, :-1])
            emb = torch.cat([emb, self.wmo_emb_layer(torch.mode(feature[:, :, -1].flatten(start_dim=-2)).values.to(torch.int32))], axis=-1)
        else:
            emb = self.weather_emb_layer(feature)
        return emb
 
    def forward(self, features, target, criterion):
        # Use the appropriate predictor based on the distribution type
        if self.kwargs['distribution'] != 'none':
            return super().forward(features, target, self.predictor)
        return super().forward(features, target, criterion)
    
    def start_input_state(self, features, index):
        batch_size = features[0].shape[0]
 
        # Create a tensor for the initial time steps
        inp_t = torch.arange(12, device=features[0].device, dtype=torch.int32)[None].repeat(batch_size, 1)  # B 12
        # Concatenate the initial input features
        inp_emb = torch.cat([features[0].unsqueeze(-1), features[1][torch.arange(batch_size)[:, None], (index + inp_t) // 12]], axis=-1)
        if self.kwargs['use_time']:
            inp_emb = torch.cat([inp_emb, features[2].repeat(1, 12, 1)], axis=-1)
        if self.kwargs['use_site']:
            inp_emb = torch.cat([inp_emb, features[3].repeat(1, 12, 1)], axis=-1)
        inp_emb = torch.cat([inp_emb, self.pos_emb(inp_t)], axis=-1)
        return inp_emb
 
    def next_input_state(self, i, out, features, index, target=None):
        batch_size = features[0].shape[0]
        device = features[0].device
        dtype = features[0].dtype
        
        # Initialize an empty tensor for the next input state
        inp_emb = torch.empty(batch_size, 1, 0, dtype=dtype, device=device)
        # Create a tensor for the current time step
        cur_t = torch.ones(batch_size, 1, device=device, dtype=torch.int32) * (i + 12)
 
        if self.inc_last:
            if (target is None) or (i == 0) or (not self.teacher_forcing):
                # Use the output from the previous time step
                inp_emb = torch.cat([inp_emb, out[:, None, [0]]], axis=-1)
            else:
                # Use the target from the previous time step
                inp_emb = torch.cat([inp_emb, target[:, [i - 1], None]], axis=-1)
        # Concatenate the next input features
        inp_emb = torch.cat([inp_emb, features[1][torch.arange(batch_size)[:, None], (index + i + 12) // 12]], axis=-1)
        if self.kwargs['use_time']:
            inp_emb = torch.cat([inp_emb, features[2]], axis=-1)
        if self.kwargs['use_site']:
            inp_emb = torch.cat([inp_emb, features[3]], axis=-1)
        inp_emb = torch.cat([inp_emb, self.pos_emb(cur_t)], axis=-1)
 
        return inp_emb
    
    def output_state(self, i, out, last_out, prediction=False):
        out = out[:, -1]
        if self.kwargs['model_diff']:
            # Normalize the output
            out = out * 0.086264
            # Combine the current and last output states
            out = torch.cat([out[:, :1] + last_out[:, :1], (out[:, 1:]**2 + last_out[:, 1:]**2).sqrt()], axis=-1)
        if prediction:
            # Use the predictor to generate the final output
            return self.predictor.predict(out)
        return out