

4. Unsinkable Disk

"A metal disk with a *hole* at its centre *sinks* in a container filled with *water*. When a *vertical water jet* hits the *centre of the disc*, it may *float* on the water surface. *Explain* this phenomenon and investigate the *relevant parameters*."

Problem Statement

"A metal disk with a *hole* at its centre *sinks* in a container filled with *water*. When a *vertical water jet* hits the *centre of the disc*, it may *float* on the water surface. *Explain* this phenomenon and investigate the *relevant parameters*."

Phenomenon Cases

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Phenomenon

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Experimental Setup

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Experimental Setup

Introduction Experimental Setup Theoretical Model Key Parameters Conclusion

Pump

Nozzles

15'

ferent nozzle diameters *Controlled jet radius change*

<u>.A 3d Printer - Resin</u>

0.375in. – 0.200in. diameter

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Disks

Theoretical Model

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Conclusion

12

Theoretical Model

Force Analysis, Jet Effects, Empirical Model

Hydraulic Jump (jet>hole)

Impinging Force, Archimedes' Principle, Empirical Model

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Free Body Diagram

 $F_g = Force \ of \ gravity$ $F_j = Force \ of \ jet$ $F_b = Buoyant \ force$ $F_t = Force \ of \ surface \ tension$

Equilibrium necessary to float:

$$F_g - F_b - F_t - F_j = 0$$

Geometry

Terms:

 $\begin{array}{l} r_n = nozzle \ radius \\ r_j = jet \ radius \\ r_h = hole \ radius \\ R = disk \ radius \\ T_d = disk \ thickness \\ d = nozzle \ height \\ Q_j = volume \ flow \ rate \end{array}$

Flow Dynamics

Assumptions

Jet does not collide with edges of disk

Jet remains vertical, centered, and at constant velocity

Tank is large enough to neglect wave effects

Water is incompressible

Flow Dynamics

Jet Forces

Decompose jet forces into two components

Opposing flow through hole

Through Bernoulli's equation: $P_{\text{atm}} + \rho g T_d = P_{\text{atm}} + \rho g x + \frac{1}{2} \rho v^2$

Additional vortices and gas

Through continuity:

$$\pi R^2 \dot{x} = \pi r^2 v$$

$$\dot{x} = \sqrt{2g(T_d - x)} \left(\frac{r}{R}\right)^2$$

Flow Dynamics

Potential Flow

For disks that barely dense enough for sinking, jet flow only opposes potential flow

$$v = \dot{x} = \sqrt{2g(T_d - x)} \left(\frac{r}{R}\right)^2$$

Calculating minimum flow rate needed from v:

$$Q = \pi r^2 \sqrt{2g(T_d - x)} \left(\frac{r}{R}\right)^2$$

Additional jet forces must be present for heavier disks

Flow Dynamics

Vortices and Turbulence

Flow Dynamics

Empirical Force Field

Force Measurement System

Empirical Force Fit

Experimental Verification

Theoretical Model

Force Analysis, Jet Effects, Empirical Model

Hydraulic Jump

Impinging Force, Archimedes' Principle, Empirical Model

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Geometry

Terms:

Q = volume flow rate $\dot{m} = mass flow rate$ r = radius v = fluid velocity h = fluid height d = nozzle height p = radial coordinatem = mass

Flow Dynamics

Free Body Diagram

 $F_g = Force \ of \ gravity$ $F_a = Impinging \ force \ of \ jet$ $F_b = Buoyant \ force$ $F_t = Force \ of \ surface \ tension$

Equilibrium necessary to float:

$$F_g + F_a - F_b - F_t = 0$$

Flow Dynamics

Additional Force

Terms: $F_a = impinging \ force$ $F_w = force \ of \ gravity \ of \ water$

New force equilibrium equation:

$$2\pi R\gamma \cos(\theta) + \rho gV = mg + F_w + F_a$$

Surface Buoyant Force Water Weight Tension Weight Impinging Force

Solve For $F_{w_i} F_{a_i}$ and V

Flow Dynamics

Narrowing Jet

The dimensions of the jet will change after accelerating for distance d

Use Bernoulli's Principle to find velocity:

$$v_j = \sqrt{v_n^2 + 2gd}$$

Use Continuity to find radius:

$$r_j = \sqrt{\frac{Q_j}{v_j \ \pi}}$$

Flow Dynamics

Hole Flow Rate

In order for the system to be continuous, the flow rate escaping through the hole must be found.

Due to the indent in the disk for stability, this is very hard to model.

We will rely on an empirical fit

 $Q_h(Q_j, \frac{r_h}{r_i})$

Flow Dynamics

Hole Flow Rate

Flow Rate Through the Hole vs. Hole Area

Impinging Force

To find the force of the jet hitting the plate, we can solve for linear momentum. Using the previously fitted mass flow rate through the hole

$$F_a = \dot{m}_j v_j - \dot{m}_h v_h$$
$$F_a = v_i^2 \rho A_i - v_h^2 \rho A_h$$

 $F_a = \rho(Q_j v_j - Q_h v_h)$

Impinging Force Experimental

Using Force Measurement System

Water Weight

Similar to the Jet Force Field, we can find $h_1 \mbox{ as a func}$ area integrals to find water volume.

Assuming the Hydraulic Jump Radius is larger than the disk radius, we can derive an equation for height from energy conservation and continuity:

$$h_1 = \frac{(Q_j - Q_h)^{\frac{3}{2}}}{p \ 2\pi \sqrt{Q_j(v_n^2 + 2gd) - Q_h v_h^2}}$$

$$V = 2\pi \int_{r_h}^{R} h_1(p) dp = \frac{(Q_j - Q_h)^{\frac{3}{2}}}{\sqrt{Q_j(v_h^2 + 2gd) - Q_h v_h^2}} (R - r_h)^{\frac{3}{2}}$$
$$F_w = \rho g V$$

0.0010 -0.0008 · — (ق 14 0.0006 -0.0004 0.0002 0.02 0.03 0.06 0.00 0.01 0.04 0.05 0.07 p (m) $\downarrow F_w$ h_1 p

h1 vs Radial Coordinate p

Flow Dynamics

0.0012 -

Buoyant Force - Range Sensor

Buoyant force \propto the depth of the disk

below the water surface (h_2) .

 $F_b = \rho g V = \rho g (\pi R^2 - \pi r_h^2) (h_2 + T_d)$

Specifications:

VL6180 Time-of-Flight Range Sensor

 $0.000m - 0.250m \pm 0.0005m$

To measure change in height of the disk

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Height Solution

Applying the equilibrium equation, we predict a value h_2 and compare to the Range Sensor Data

Key Parameters

Introduction

Experimental Setup

Theoretical Model

Key Parameters

Conclusion

37

Introduction

Experimental Setup

Key Parameters – Flow Dynamics

Theoretical Model

Conclusion

Key Parameters

Jet Force vs. Flow Rate

Maximum Mass vs. Flow Rate

Key Parameters – Hydraulic Jump

Buoyant Force

Impinging Force

Disk Depth (buoyancy) vs. Flow Rate

Further Insights

Conclusion

"A metal disk with a **hole** at its centre **sinks** in a container filled with **water**. When a **vertical water jet** hits the **centre of the disc**, it may **float** on the water surface. **Explain** this phenomenon and investigate the **relevant parameters**."

Conclusion

"A metal disk with a **hole** at its centre **sinks** in a container filled with **water**. When a **vertical water jet** hits the **centre of the disc**, it may **float** on the water surface. **Explain** this phenomenon and investigate the **relevant parameters**."

Conclusion

"A metal disk with a **hole** at its centre **sinks** in a container filled with **water**. When a **vertical water jet** hits the **centre of the disc**, it may **float** on the water surface. **Explain** this phenomenon and investigate the **relevant parameters**."

References

Hassan, S. H., Guo, T., & Vlachos, P. P. (2019). Flow field evolution and entrainment in a free surface plunging jet. Physical Review Fluids, 4(10). https://doi.org/10.1103/physrevfluids.4.104603

Kazachkov, I. V. (2011). The Mathematical Models for Penetration of a Liquid Jets into a Pool. World Scientific and Engineering Academy and Society Transactions on Fluid Mechanics, 2, 71–91. Retrieved from https://www.researchgate.net/publication/236145412_The_Mathematical_ Models_for_Penetration_of_a_Liquid_Jets_into_a_Pool.

Watson, E. J. (1964). The radial spread of a liquid jet over a horizontal plane. Journal of Fluid Mechanics, 20(3), 481–499. https://doi.org/10.1017/s0022112064001367

Thank you for listening

References

- Luo, Dingjun (1997). Bifurcation Theory and Methods of Dynamical Systems.
- World Scientific. p. 26. <u>ISBN 981-02-2094-4</u>.
- Kuznecov, Y. A. (1998). Elements of applied bifurcation theory. New York, NY:

Springer.

Güémez, J., Fiolhais, C., & Fiolhais, M. (2002). The Cartesian diver and the Fold catastrophe. American Journal of Physics, 70(7), 710-714.

doi:10.1119/1.1477433

Parlange, J. Y.; Braddock, R. D.; Sander, G. (1981). "Analytical approximations to the solution of the Blasius equation". Acta Mech. **38**: 119–

125. <u>doi</u>:<u>10.1007/BF01351467</u>.

Appendix A: Moody Diagram

Appendix B: Consistent Force Measurement

Jet Force with 15 Flow Rates vs. Time

Appendix C: Flow Meter Code

```
void loop() {
 interrupts(); //Enables interrupts on the Arduino
 if (restart == true){
  ini time = micros();
  restart = false;
 }
 if (count \geq 5)
  time elapsed = micros() - ini time;
  flowRate = 1000000 * count * slope / time_elapsed;
  Serial.print("flow rate: ");
  Serial.print(flowRate);
count = 0;
  restart = true;
 }
```

Appendix D: Temperature and Density of Fluid

Solution %(Mass- Volume)	Temperat ure	Density	Viscosity
0	20	0.9982	1
8	27	1.0559	1
16	35	1.1162	1
20	43	1.1478	1
26	55	1.193	1

Appendix F: Stability Analysis

Jet does not collide with edges of disk

Uneven force distribution from un-centered flow causes torque on one side of disk.

Causes higher edge of disk to shift towards stream, correcting back towards steady state

Appendix G: Torque Calculation

From previous calculation of force colliding on disk:

 $F_a = v_1^2 \rho \pi r_{jet}^2 - v_2^2 \rho A_2$

$$\Gamma = r_{off} \times F_a = r_{off} F_a sin90^\circ$$

If $\Gamma > \Gamma_b + \Gamma_s$, disk will tip over and sink

Critical condition:

 $r_{off}F_asin90^\circ = RF_bsin90^\circ + RF_ssin90^\circ$

 r_{off} scales linearly with disk radius

$$r_{off} = \frac{RF_b + RF_s}{F_a}$$

Appendix H: Laser Mount

Specifications:

- PLA printed 70 degree mount
- Long Exposure Images remove turbulence from image

To measure radius and visualize hydraulic jump

Appendix I: Surface Tension, Density, Pressure and Viscosity *From literature, @ 20.9°C:*

$$\gamma = 0.0435 \frac{\text{N}}{\text{m}}$$
$$\theta = 67.7^{\circ}$$

(Biresaw & Carriere, 2001)

$$\rho = 998.2 \frac{\text{kg}}{\text{m}^3}$$

$$P_{atm} = 101.325 \text{ kPa}$$

(Engineering Toolbox, 2004)

$$\mu = 0.9775 \cdot 10^{-3} \text{ Pa} \cdot \text{s}$$

(IAPWS, 2008)

Appendix K: Bernoulli Assumptions

Inviscid Fluid

Steady fluid flow

Fluid is incompressible

Appendix L: Calculating Reynolds Number

$$Re = \frac{\rho v L}{\mu}$$

- $\rho = density$
- v = flow speed

 $L = characteristic \ linear \ dimension$

 $\mu = dynamic viscosity of the fluid$

Re: 25000 – 35000

63

Appendix M: Measuring Physical

Flow Meter ± 0.7%

Analytical Balance ± 0.01g

5kg Load Cell + HX711 Amplifier

VL6180 Range Sensor: ± 0.5mm

Digital Caliper ± 0.02mm

Canon EOS 100D – DSLR Camera