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/. Bead Dynamics

A circular hoop rotates
about a vertical diameter.
A small bead is allowed to
roll in a groove on the
inside of the hoop.
Investigate the relevant
parameters affecting the
dynamics of the bead.




IYPT 2021

Problem Statement

A circular hoop rotates about a vertical diameter. A small bead is allowed to roll
in a groove on the inside of the hoop. Investigate the relevant parameters

affecting the dynamics of the bead.

Parameters:

Hoop Radius

Bead Radius

Hoop Angular Velocity

Location of vertical axis

A o

Hoop Inclination
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Overview

]

Introduction
Reproduction of the Phenomenon,
Preliminary Observations

Experimental Setup
Variable Angle & Offset,
PID Control, Image Analysis

Theoretical Model

Lagrangian Analysis, Dynamic motion,
Axial Offset, Resonance

Key Parameter Interactions
Effects of Changing Physical Parameters

Conclusion
Further insights, Summary
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Phenomenon

Hoop Frame

Oscillations about
Ball rolls along ho~  equilibrium position Backdrop

Hoop accelerates

Equilibrium Position L -l Support Frame

Introduction Experimental Setup Theoretical Model Key Parameters Conclusion
| | | | |
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Preliminary Observations

0

Final Position
1 Initial Position

Introduction Experimental Setup Theoretical Model Key Parameters Conclusion
| | | | |

-
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Preliminary Observations

s w = 10.5rad/s

-~

0

Final Position
e Initial Positio

»

w = 5.2rad/s

Final Position

Introduction Experimental Setup Theoretical Model Key Parameters Conclusion
| | | | |
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Preliminary Observations with Tilt

Nmnmc' . '\d

Steady state bead oscillations-observed with tilted angles

Digitally undistorted ‘

Introduction Experimental Setup Theoretical Model

Key Parameters Conclusion
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-xperimental Setup

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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-Xperimental Setup

3D printed hoop
Smooth steel bead
Mounted steel frame

GoProAction Camera
Dark backdrop

High torque DC Motor

Arduino breakbeam
Sensors

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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-xperimental Setup

Low friction
bearing

Low friction
bearing

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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_xpenmenta\ Setup

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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_xpenmenta\ Setup

Rotatlrlg reference frame tracking

\/‘\

GoPro Action Camera

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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-xperimental Setup

PID measurement PID motor controllers

Ak -
= ﬁ’. e
1%@« 1 Break Beam Emltter

Arduino Mega |

Motor s,oeec/ IS not constant due to heating
even if provided constant current

i o 1o BBz

@ Resolve through real-time feedback loop
to control angular velocity

Experimental Setup Theoretical Model Key Parameters Conclusion
|
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PID Control

Desired angular velocity

10
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Accurate real-time feedback

loop control over angular velocity

Experimental Setup Theoretical Model Key Parameters Conclusion
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Measurement Method f, cno

OpenCV

Track center of hoop and ball to determine their relative positions

-_—

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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Measurement Method  @Tracker

Video Analysis and Modeling Tool

@) Tracker

File Edit Video Track Coordinate System View Help

S H| S Bl B - 1| ¥create =0 8 | Qasn | oy | ™ S A A | 4 4 A
¥..0 mass Em[1000k3)

i © massA massB < massC

i * cmA + cmB -+ cmC O massE

MATLAB
Video
Undistortion

Python Open
CV

mass E selected (set mass on toolbar, shiftclickto mark)
“““OO%E“’A SRR

| GOPR0119_1625639154139.JPG.irk | GOPRO120_1625639154139.JPGtrk | GOPRO121_1625639154139.JPG.trk | GOPR0116_1625639154139.JPG trk

Experimental Setup Theoretical Model Key Parameters Conclusion
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Measuring Bead Radius and Mass

Vernier Caliper: £0.0002 m

Digital Scale: 00.0-999.0 + 0.01 g

D =9.54+ 0.2 mm D =111+ 0.2 mm D =127+ 0.2mm D =143 + 0.2mm D =15.6 + 0.2mm

mp = 3.56+0.01g mp = 5.59 4+ 0.01¢g mp = 8.25+0.01g mp =11.91+0.01g mp = 16.36 + 0.01g

@ Manufactured Stainless Steel Bearings

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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Measuring Physical Parameters

Measuring ANYCUBIC
Tape Chiron
+0.001 m

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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Theoretical Model

Theoretical Model Key Parameters Conclusion
| | |
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heoretical Model

Amplitude_

' Frequenc:y>

Lagrangian Axis of Inclination anad
Analysis Rotation Resonance
Theoretical Model Key Parameters Conclusion
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Geometry (point-mass mode)) ,

w: hoop angular velocity

R: hoop radius

r: bead radius

m: bead mass

0: bead inclination

g: gravitational acceleration

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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AssuMptions

@ Motion is constrained to along the groove

@ Restrict —= < 0 < =
2 2
@ Air resistance is negligible

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Lagrangian Formalism

w

—

To simulate the motion, we use
Lagrangian Mechanics

1 :
T = EmRZ(OZ + sin?(6) w?)

U= —mgR(cos0)

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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-uler-Lagrange Equations

W
T
L = — Potential Energy I i
I
|
Kinetic Energy I !
:
1 2(Nn2 2cin2 :
TzimR (H + w*sin H) 0!
: R
Along Hoop Rotation ' p
|
:
|
1

Need to resolve friction issues

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] |
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Rolling Friction
Equations of Motion

d?s
ez

= —mgsin6 + Fr

w
FfT' — FND = Icma

(Cross, 2016)

Model energy loss from
compression hysteresis

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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—orce Analysis

y

N>

Coriolis force: F.p = —2mw X U
g d - -
Euler force: F, = MW X7
. - — — -
Fy Centrifugal force: F, = —mw X (w X 1)
Lagrangian Analysis Axis of Rotation Inclination and Resonance
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—orce Analysis

From Newton’s 2" Law:
N,cosa — Nycosa+ F.,, +F, =0
N, sina + Ny sina = mg cos 0 + F.sin0

mgcosO + F.sin6| F.,, + F,

1= - +
2sina 2cosa

N mgcos0 + F.sin8| F. .+ F,

2 — —

2sina 2cosa

Coriolis and Euler force create a
difference between normal forces

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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—Xperimental

Angle (radians)

Lagrangian Analysis
]

—riction Fit

28

0.2

0.1

-0.2

-0.3

—=Theoretical

Experimental

Axis of Rotation
|

Time (s)

Inclination and Resonance
|



IYPT 2021 29

-uler-Lagrange Equations

l—I Generalized Coordinate

LW
T =%mR2(92 + w?sin? Q) <:;—>
U= —mgRcos0 E

Q¢ = —bR?0

d (0L 0JL 0 E

- (£> — Euler-Lagrange Eqd(iiion E 9

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Combined Solution

d (0L 0L . b . g
39 > 9+—9+(§—a)2c059)sin9=0

dt \ 96 m
w =4m, b =0.1,m=0.028,R = 0.141

L5 Simulated with scipy odeint

1.4 -

1.3 1

theta (rad)
H
2]

| |——| Equilibrium Solution Exists
I

1.1 |

1.0

0.9 - H

0 2 4 6 8 10

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Groove and Sphere Correction

Lagrangian Analysis Axis of Rotation Inclination and Resonance
]

31
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Groove and Sphere Correction
la

+—>

L
d (0L 0L b (g

E(%)_ae » 0+ —0+ [ = cosf |sinf =0
\ ) b .
9+K[—9+(g
m

——w2c059>sin9] =0

Rem
where
i 2 2171 IS a geometric correction
r RCM .
k=|1+y +1 factor (Raviola et al., 2016)
REy L?
re — —
4 (y = 2/5)
Lagrangian Analysis Axis of Rotation Inclination and Resonance
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-xperimental Verification

= =
o)) %)

S ~
-
-
-
-
-
-
-

=Y
o
--

(0]

+++++++H+++HHHHHHHHHHH

Hoop angular velocity (rad/s)

Measure angular velocity and use as input into
simulation to predict transient motion

0 5 10

Time (s)

Lagrangian Analysis Axis of Rotation
] ]

15 20

Inclination and Resonance
|

33
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-xperimental Verification

-0.6

2 4 6 8 10 12

0.7 emwTheoretical

os - Experimental

-0.9

n
-
O
©
©
|-
QX
Q0o
-
<

@ Accurate prediction of transient motion

with arbitrarily changing hoop velocity
Time (s)

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ]
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Steady State Solutions

. b . g 5 _ B
0 +k|—O0+|——w“cosB |sin@| =0
m Rem

Ocq & 6=60=0 Bead settles due to friction

|

Sinfyy = 0= 6,, =0

g
cosf,, = = 60,, = arccos
q (,()ZRCM q (,()ZRCM
Lagrangian Analysis Axis of Rotation Inclination and Resonance
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—xamining Equilibria

Sinfyy = 0= 6,, =0

g g
cosf,, = — 0,, = arccos| ———
€q U)ZRCM €q G)ZRCM
g
(I)C w = - = (UC
Heq I RCM
T2 fm = o o o o o o o o o o e :— ———————————————————————————————
I e —————
|
3t 1
| Supercritical Pitchfork Bifurcation

;/
— — . — —

-6t

-3¢

-T2

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Stability Analysis

9.5 rad/s

37

12 w?

Uerr(0) = U(O) +

2mRE,, cos? 0

— Effective Potential
° Unstable equilibrium
* Stable equilibrium

Stastaniepatenddliindm
g ra\frigumogralvivy ce
Stable potential wells
from centrifugal force

Effective Potential (a.u.)

-1.5 -1 -0.5 0 0.5

Axis of Rotation
|

Lagrangian Analysis
]

1 1.5

Inclination and Resonance
|
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heoretical Model

Amplitude_

' Frequenc:y>

Lagrangian Axis of Inclination anad
Analysis Rotation Resonance
Theoretical Model Key Parameters Conclusion
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Geometry

|a

R : hoop radius

w : hoop angular velocity

: bead radius

: bead mass

: bead inclination

: gravitational acceleration

A
v

L

Q..QCDS%

: axis offset

Axis of Rotation Inclination and Resonance
| |
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AssuMptions

@ Motion is constrained to along the groove

@ Restrict —= < 6 < =
2 2
@ Air resistance is negligible

Axis of Rotation Inclination and Resonance
| |
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Lagrangian Analysis

1 2 92 2 : 2
T = =mR;y — +=mw*(d + R¢p Sin )
2 K 2 e
Shifted axis
U=—-—mgRcycosf
Q¢ = —bR%y6
where IS a geometric correction
__, factor (Raviola et al., 2016)
2 2
=|1+y . Rem +1
K =
RZ,, I | r=2/5) |
TZ — T
) LI Coefficient of Moment of Inertia
Axis of Rotation Inclination and Resonance
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Lagrangian Analysis
d (0L 0L
dt(aé)_ae

\ ) b . g , _ w?d cos 8
O+kxk|—O0+|——— w“cosf |sinf — =0
m Reym Reym

g &6 =0=0

g , _ w?d cos 8
—— — w*“cosf |sinf — =0
Rem Rem

Equilibrium Solution \

Python numerical solution with fsolve

Axis of Rotation Inclination and Resonance
| |
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—xamining Equilibria

Ocq(rad) R =0.135m,7 = 0.015m,d = R/8

1.5

1.0 4

Stable equilibrium

0.5

Unstable equilibrium

—
-
.

0.0

Imperfect Pitchfork Bifurcation

1.0

Axis of Rotation Inclination and Resonance
| |

T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 <
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heoretical Model

Amplitude_

' Frequenc:y>

Lagrangian Axis of Inclination ana
Analysis Rotation Resonance
Theoretical Model Key Parameters Conclusion
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Geometry

1 g =981m-s?

|a

R = hoop radius

w = hoop angular velocity

r = bead radius

m = bead mass

6 = bead inclination

g = gravitational acceleration
a = axis tilt "

A
v

L

Inclination and Resonance
|

45
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-Xperimental Setup

Wooden Inclmes

46

a = 1.07° £0.01°
a = 2.75° £0.01°
a = 3.14° £0.01°
a = 4.65°+0.01°
a =15.72° £ 0.01°
a = 10.25° + 0.01°

Inclination and Resonance
|
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AssuMptions

@ Motion is constrained to along the groove

@ Air resistance is negligible

<L

N

—~—

Inclination and Resonance
|

47
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Lagrangian Analysis

1 02
T = —mR¢y (— + w? sin? 9)

2 K

U= —mgRpy(cosacosf + sinacos(wt) sin §)

Qo = —bR¢y6

d (0L\ 0L

dt\ag) 06 l
.. b . 7] 5 _ g
0+k|—0+|—=——cosa— w-cosf |sinf| = k——sin a cos(wt) cos 8

m Rem Rem

Inclination and Resonance
|



IYPT 2021

Oscillation and Resonance

. b .
0+ k l—@ + <Lcosa — w? cos 9> sin 9] = Kisinacos(wt) cos @
0 m Rem Rem

(rad) |

Ave with scipy odeint

b=0.09kg-m?- -s71
m = 0.066 kg

R =0.183 m

t(s) r=0.0126 m
L=0.0174 m
a=4.5°

w = 37 6, =0,=0

Inclination and Resonance
|
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Small Angle Approximation

For Small Angles less than 15 degrees, simplify via Small Angle Approx.

. b .
0 = kaicos(a)t) —k [—9 + (i — w2> 9]
Rem T m Rem

I Periodic Driving Term I

0 Periodic Variation of Cosine Causes Resonance in System

(Raviola, L. A., Véliz, M. E., Salomone, H. D., Olivieri, N. A., & Rodriguez, E. E. 2016)

Inclination and Resonance
|
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-xperimental Observation

Inclination and Resonance
|
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Resonance

Maximum Amplitude Achieved:

Driving Term
ag
Ay ((U) — >
k+ 1\ , g | B 2 )
Rem % )% " Rem ) @
Natural Frequency I Damping Term
Resonant Frequency:

s kt1( g kb
U7 Tk \Rey 20+ D)m2

(Raviola, L. A., Véliz, M. E., Salomone, H. D., Olivieri, N. A., & Rodriguez, E. E. 2016)

Inclination and Resonance
|

52
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Resonance Steady-State

—Theoretical

» Experimental

1.0+ (\
0.5 '

|

|

|

|

|

/\

|

10.
ﬂﬂﬂﬂﬂﬂ

Inclination and Resonance
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Resonance

Oscillation amplitude (rad)

15 a =10.25
1.1
A
09 Resonance Predicted
0.8 Excellent Agreement between theory and experiment
0.7
0.6 .
—Theoretical
0.5 .
e Experimental
0.4
03
0.2
0.1
0.0
0 1 2 3 4 5 6 7 8 9 10 11 12

Angular frequency (rad/s)

Raviola, L. A., Véliz, M. E., Salomone, H. D., Olivieri, N. A., & Rodriguez, E. E. (2016). The bead on a rotating hoop revisited: an
unexpected resonance. European Journal of Physics, 38(1), 015005. Doi.org/10.1088/0143-0807/38/1/015005

Inclination and Resonance
|
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Key

Parameters
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Varying Angular Velocity I

1.6

0 ~—rad

1.4

1.2
/ —Theoretical

Experimental

Greater equilibrium angle with
greater angular velocity

0.8

Angle (Rad)

0.4

rad
> —
02 w, = 8.8 .

0 5 10 15 35 40 45 50

Angular Velocity (Rad/s)

Key Parameters Conclusion
| ]
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Varying Bead Radius

Equilibrium Angle (rad)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

e Experimental

R =0.135m
w=10.68rad-s~?!
g=98m-s72

—Theoretical

S5/

S

0.01

ller equilibrium angles with
rger bead radii

-0.70

0.

-0.74

-0.78

-0.82

-0.86

-0.90

0.005

0.010 0.015

0.020

P5

Radius of Bead (m)

Key Parameters
]

Conclusion
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Varying Hoop Diameter

85
Experimental
—Theory
80
;\
Q
o]0]
c 75
< Greater Hoop Size yields
& Greater Equilibrium Angle
=)
G 7 /
=)
O
Ll
65
60
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Diameter (m)

Key Parameters Conclusion
| ]
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Varying Axis Offset

1.0 4

o
5

|
o
w

Equilibrium Angle (rad)

-1.0 A

o
(=]
L

0.00

59
R =0.135m
r = 0.0095m
w=1257rad-s?!
g=98m-s7?
Larger equilibrium angles with
larger axis offset
Stable equilibrium
Unstable equilibrium
0.04 0.06 0.08 0.10 0.12 0.14
Axis Offset (m)

Conclusion
|

Key Parameters
]
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Points Raised

Qualitative Explanation of Phenomenon (Opponent)

* (larified the role of the centrifugal force in the onset of the phenomenon

Axial offset and tilt (Reviewer)
* Important to investigate, within the scope of the problem
* Hoop is still rotating vertically with axial offset

» Tilt is rotating about a diameter
Drag, Rolling Friction (Opponent)
* Independently identified friction, considered normal force
» \Verified rolling without slipping
Dynamics of the system (Opponent and Reviewer)
* Arbitrary angular velocity input, resonance conditions, great agreement
» Static measurements are also important for the phenomenon
Parameter Variation (Reporter/Opponent/Reporter and Opponent)

* Hoop radius, angular velocity, bead radius, axial offset, tilt varied — sufficient variation
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Conclusion

A circular hoop rotates about a vertical diameter. A small bead is allowed to roll

in a groove on the inside of the hoop. Investigate the relevant parameters

affecting the dynamics of the bead.

YPT 2001

Experimental Setup Measurement Method @ Tracker

=l Steel Frame

-
-
-
.
.
.
-

 MATLAB

Vi
. Undistortion

Tracker

Experimental Setup Theoretical Model Key Parameters Conclusion

Conclusion
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Conclusion

A circular hoop rotates about a vertical diameter. A small bead is allowed to roll
in a groove on the inside of the hoop. Investigate the relevant parameters

affecting the dynamics of the bead.

17T 2021

IYPT 2021
Lagrangian Formalism Examining Equilibria
v ow
Beq(rad) R=0.135m,7=0.015md = R/8
IYPT 2021 IYPT 2021
Experimental Verification | - Oscillation and Resonance
. = b g g
" G+x|—0+|——cosa— w?cos@ |sin@|=x——sina cos(wt) cos §
: e+ Joue]
R HHH””””H _ : ANy 8(rad) Reu Reur
= { q { t . Imperfect Pitchfork Bifurcation ‘ N /
E o q t1 \ I R N N Solve with scipy odeint
g 4 VA
) ° 1 =2
Lagrangian Analysis >uy i @ * b=0.09kg -m?-s7t
%1 R Axis of Rotation m = 0.066 kg
@ . J R=0183m
g Measure angular velocity and use as input into . t(s) r=0.0126 m
2 simulation to predict transient motion L=00174m
o =45
w = 3m By =6,=0
Time (s)
Lagrangian Analysis Axis of Rotation Inclination and Resonance t(s)

Inclinztion and Resonance
———

Conclusion
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Conclusion

63

A circular hoop rotates about a vertical diameter. A small bead is allowed to roll

in a groove on the inside of the hoop. Investigate the relevant parameters

affecting the dynamics of the bead.

YBT 2021

Key Para

Hoop Rad
Bead Radi
Hoop Angular®

Axial Offs

Axial Tilt

IYPT 2021

Varying Ho

Equilibrium Angle (*)

* Experimental

—Theary

IYPT 2021

Varying Axis Offs

Y

Stable equ

Unstable equ

-

Equilibrium Angle (rad)

—_—

0.00

Axi

IYPT 2021

Resonance

Oscillation amplitude (rad)

54

& =10.25

Resonance Predicted
Excellent Agresment between theory ond experiment

—Theorstical

+ Experimental

i 1 5 [ 7
Angular frequency (rad/s)
Raviola, L. A., Véliz, M. E., Salomane, H. ., Clivieri, M. A., & Rodriguez, E. E. [2016). The bead on 2 rotating hoop revisited: an
eeeeeeee d resonance. Europezn Journzl of Physics, 38(1), 015005. Doi.org/10.1088/0143-0807/38/1/015005

Inclination and Resonance

Conclusion
|
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Thank you for listening

66
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Appendix
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Appendix Static Friction

Ipau® = Fsr

T'(i) = RCMH

2 RCM .o
Fr = ngﬁaur—ZH

Appendix
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Appendix

Appendix

Raviola et al., 2016.

69
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Appendix

ds =rdep = (Ry —a) db

. (Ro—a) .
§=——"0

dSCM = (RO —a —T') do = RCM do

VeMrel = Rcp 6

Raviola et al., 2016.
Appendix
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Appendix

1 .
T = Em(ng,rel + (RCM sin 9(,())2) + EICMQDZ

1 ] | 1 R? |
= —mR%y (6 + w?sin?9) + Emyr_Z(RO —a)? 62

2
1 R?(Ry, — a)?\ .
ZEngM Kl +y (RZO - ) )92 + w? sin® 9]
cM

1 1, |
= Eng‘M <E 62 + w? sin? 0>

Raviola et al., 2016.

Appendix
|
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-ree-Body Diagram

Fy

There are three forces acting on the bead

|

F,  However, we now shift into a rotating reference

frame, which introduces fictitious forces

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Motion Constraints

W
— Consider a moving coordinate system that

rotates along with the hoop

The constraints on the motion of the bead are:

y? + z2 = R?
x=0
-y
Writing the force equation, we get
Lagrangian Analysis Axis of Rotation Inclination and Resonance
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La g rain g |a n Ana ‘yS | S Writing the force equation, we get

ma=FC+FC+Fé+FN+Ff

Where
0
Feor = | —2mwy Coriolis Force
2mwx
0
F, = | mw?y Centrifugal Force
mw?z
0
F,=1 0 Gravity
vT
de Fp=—-u—N Sliding Friction
Note: Fgyier = —X1r =20 Vr

Lagrangian Analysis Axis of Rotation Inclination and Resonance
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Combined Solution

If the bead is in equilibrium, its relative velocity (to the hoop) and the Coriolis force

will be equal to zero. Then, we can get that

z  wiy?

y ([ Fry AN w’y  Frz _ )
[ \mgR [\ g mgR/)

w?yz  y\° 7z w?y?\’
-— < 2 —_— 2 2=R2
< T ) - <R Rg ) SRR

(Balandin and Shalimova, 2015)

Lagrangian Analysis Axis of Rotation Inclination and Resonance
] ] |
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Stability Visualization

We can visualize this stability using Desmos in the animation below for the parameters:
u=03R=10<5w<10,g=9.8

[)oe o odel ro g Or exact geome 0 atiIo
¢ R=1
@ w=0
@ g=98
Lagrangian Analysis Axis of Rotation Inclination and Resonance
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Measuring Physical Parameters

Meter Stick
+0.01 m
Vernier Caliper
+0.0002 m
Analytical Balance
+0.01g
Experimental Setup Theoretical Model Key Parameters Conclusion
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Varying w and the Bead(Size and Mass) cont.

Red Bead: 8 vs. w

Blue Bead: 8 vs. w

« Theoretical & » Experimental & (Refer to slide 9 for error bars)

* Theoretical © ® Experimental © (Refer to slide 9 for error bars)
20 ,_{_. '{4
10 '_I_' 1 "i“
(rad/s) 8 10 12 14 :}‘(-(md!s) 24
Metal Bead: © vs. w .
Blue & Red: Since these beads behave
| similarly, therefore, the mass of the bead
5 - does not affect its motion.
g All: Despite the beads having different
° textures, masses, and sizes, their motion
is very similar. Those factors have an
¥ almost negligible effect on the outcome.

w [rad;/s}

Key Parameters Conclusion
|
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Varying Hoop Radius e

g=98m-s?
Theoretical
2
Ocq = /2
s p——~— -~ *“~—-"-"-"-"---"-" - - r---"-"-"--"-"--"-"-"-2--"-"-"-"-"-T-~”-"-"-"°-"°~/°"°"°-"-"°/-"-"---T--"-"--r
1
T 05
o
oo
C
T o
= 0 0.5 0.6 0.7 0.8 0.9 1
S
§Y 0.5
- Larger equilibrium angles with
larger hoop radii
-1 \
T e e s [ sy S [ B I
Ocq = —T/2
-2
Hoop Radius (m)
Key Parameters Conclusion
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Ap peﬂdiX A (Raviola et al))

Here we briefly summarise the corrections needed for taking into account the finite size of the
bead and the geometry of the hoop’s transversal profile, which alter the instantaneous axis of
rotation of the bead and hence the EOM. Figure Al shows the situation. If the sphere turns an
angle d¢ around its centre while rolling without slipping over the groove, the contact point
advances a distance ds = rdy, where r = \R> — L?/4 is the distance between the sphere’s
centre and the instantaneous axis of rotation (see figure 4). The rolling condition establishes a
constraint between # and :

RQ—G

r

ds=rdp=Ry—a)dd = ¢ = b, (20)

Meanwhile, the centre of mass of the sphere travels a distance dscy in a reference frame fixed
to the hoop,

dscm = (Ro — a — r) df = Rew df,

where Rey = Ryg — a — r is the distance from the centre of the hoop to the centre of the
sphere. Hence the velocity of the centre of mass (relative to the hoop) is

vem.ret = Remf- (21)
The kinetic energy of the sphere is (by Knig’s decomposition)

1 _ 1
T = Em(véM,re, + (Rey sin 0 w)?) + EICM @?
. 2 "
= %ngM @ + w?sin0) + %mqu—,(R(, — a)2*
)

22)
1 R2(Ry — a)? ), (
= —mR3y (1 + 'Y(E—Qa)]b'z + w?sin’ @
2 om7T
ez (12 2 gin?2
= —mRey|— 6 + wsin~#|,
2 K
where Iy = 7mR? is the sphere’s moment of inertia about its centre of mass (7 = 2/5).
On the other hand, the formula for the potential energy V is analogous to equation (2),
just substituting Ry by Rcy. The same substitution applies to formula (4) for the generalised
friction force. From the usual operations on the Lagrangian, equation (13) follows.

Appendix
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Ap peﬂdiX A (Raviola et al))

Under the assunipti;:ms of small angles o and 6, the EOM turns into

i+ n| 2o+ (i _ wﬂ)e = ka—2— cos (wr). (17)
m Rem Rem
Consequently, the maximum angle reached by the rigid spherical bead as a function of w is
given by
¥
As(w) = 3 (18)

RCMJ((’%I)MQ B %)2 N (E)zw2

and the angular frequency for maximum amplitude is

| 2
< b
B A L . SR — (19)
£+ 1\Rey  2(k + 1) m?
It's easy to check that we recover the formulas for the point-particle approximation—

equations (5) to (12)—when the correction factor k = 1 (which occurs when =0
or R = 0).

Appendix
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Ap peﬂdiX B (Balandin and Shalimova)

The motion of a heavy particle, that is, a bead P of mass m threaded onto a hoop in the form of a circle of radius £ with its centre at the
point O, is considered. The hoop rotates with constant angular velocity w about an inclined axis lying in its plane and passing through its
centre. The angle of inclination of the axis from the vertical is assumed to be constant and equal to «. A dry friction force with a coefficient
of friction . acts between the bead and the hoop.

The motion of the bead can be described using Lagrange's equations of the first kind in a moving coordinate system (MCS) associated
with the hoop. Suppose Oxyz is a right-handed triplet with origin at the centre of the hoop, the z axis of which is directed along its axis of
rotation, the y axis is located in the plane of the hoop and the x axis is perpendicular to this plane (see Fig. 1).

In the MCS, the bead position P is given by the coordinates (x, y, z) and the constraints restricting its motion are defined by the relations

y

_ 1.2 2 o2y _ — v =
f"z(}”'z €)=0, fL=x=0 ) (1.1)

Fig. 1.

Suppose v, = (k, y, z) is the bead velocity in the MCS, v, =(vy, vy)!/2, and the transfer velocity v. =(— wy, wx, 0). The kinetic energy of
the system, free from constraints, and the potential energy in the MSC are given by the relations

T = %m((j:— o0p) + (7 +ox)’ + )

U = mg(xsinwfsina + ycosofsina. + zcosa.)

Appendix
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Ap peﬂdiX B (Balandin and Shalimova)

where g is the gravitational acceleration. Lagrange's equations

doly oLy doly 0Ly, o 4ol _ 0L,

= = = + F,
dt 0x ox’ dt dy oy 7 dt oz oz ¢ (1.2)

where

L, =L+0fi+Myfs, L=T-U (1.3)
and F=(0, Fy, F;) is the friction force, can be represented in the form
ma = Fc+F . +Fy+N+F

Here a is the acceleration of the bead in the MSC, Fr and F. are the Coriolis force and the centrifugal force, Fy is the gravitational force
and N is the normal reaction of the hoop. The unit vectors

0 0 1
T=| g | M= ¢ | b=1txn= 0
y/€ -z/€ 0

respectively define the tangent, internal normal and binormal to the circle at the point P. The expressions for the forces have the form

0 0 0

Fe = 2mawoy |- F. = mo)zy » Fy= 0
Ay 0

N = —7\.|‘En+7\.2h = aly y F = F}' N F” T
;I“IZ Fz

Appendix
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Camera Calibration ‘MATLAB@

A .

Extrinsic Parameters Visualization

Y (mm)

7
H
\
:
|a;/c
c

Given: Object Coordinates, Pixel Coordinates
Fit Camera Model
Determine R, T

Introduction Experimental Setup Theoretical Model Model Verification Conclusion
| ] ]
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Ap peﬂdiX B (Balandin and Shalimova)

and, in the case of slipping vy # 0

F=-p2N, N=(NN)"”
U’

(1.4)
We introduce dimensionless parameters using the relations
¢ g
x—=>xf, yoyl, z—z, =15, o—o 7
g
A — k,m%, Ay homg, L Lmgl, F,—>mgF, F,v> mgF, (1.5)

Retaining a dot over a symbol as the notation for a derivative with respect to the new time and taking account of expression (1.5), the
equations of constraints (1.1) and the Lagrangian (1.3 ) can be written as

fi=30P+d-1) =0, f=x=0
Ly = 3((%-0p) + (+ 0x) + 2)

—Xxsinwfsino — ycoswfsina — zcosa + A f, + A, (1.6)

To determine the Lagrange multipliers A; and A\, it is necessary to calculate the first and second derivatives with respect to time of the
identities specifying the constraints. These derivatives have the form

w+zz =0, x=0,

y)“;+z2+j12+z'2=0, ¥=0 (1.7)
Moreover, since the friction force vector touches the circle at the point P, we have

yE+zF, =0

and substitution of the expressions for the second derivatives from Eqs 1.2 into identities (1.7) enables us to represent Ay and A; and also
the equations of motion in the form

A = — (X +5°) - 0’y + ycoswisina + zcosa
Ly = - 20§+ sinorsine,  j = o’y - cosorsina + Ay + F,
i =-cosa+hz+F, 18)

Appendix
|
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Ap peﬂdiX B (Balandin and Shalimova)

According to the Amontons—-Coulomb law, the relation for the magnitude of the friction force
2,42 2
F = F+F<p’(A+13) (1.9)

is satisfied.
Substitution of the expressions (1.8) for Ay and A, into equality (1.9) gives the condition

F< pz[{— (,i'z +j:’2) - {11:-2y2 + ycosmisina + zu::ms'[:r.)2 + (= 20y + sinwfsin 0.}2]

which becomes an equality in the case of sliding and, according to relation (1.4),

F = -F j; ) FZ=_F g

: 2. . . (2,172
F= p[(ycosmrsmu+zcosa—(x2+y2)—m2y2)2+(smmfsmu—2my)2]

since the direction of the friction force is opposite to the direction of sliding.
In the case of equilibrium of the bead with respect to the hoop, the inequality

: 22,2, 2.2 .2
F< p2(ycosmrsma+zcosa—m ¥') +usin"ofsin o (1.10)

must be satisfied for all instants t.

Appendix
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Ap peﬂdiX B (Balandin and Shalimova)

If the bead is in equilibrium with respect to the hoop, its relative velocity and, together with it, also the Coriolis force, are equal to zero.
The friction force, acting along the tangent to the hoop then compensates the sum of the tangential components of the gravitational force
and the centrifugal force, that is,

—z(mzy—cosmfsina—Fz)+y(— cosa+ Fy) = 0 2.1)
We now introduce the notation

&y, 2) = (02_1’2 — ZCOSMISINGL + ycosa

2 .
n(y, z7) = (ycoswisina + zcosa — mzyz) + sin’ ofsin’a
Using the first equality of (1.6), Eq. (2.1) is reduced to the form

F::m@z—ﬂmmmﬁna+ymmu (2.2)

This equation together with the first equality of (1.6) and inequality (1.10) forms a system for determining the relative equilibria and,
after substituting expression (2.2 for F, this system takes the form

Em <), ¥+ =1 (2.3)

Appendix
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peﬂdiX C (Axis Offset Code)

numpy np
matplotlib.pyplot plt
scipy.optimize fsolve

fun (x) :

(g/(Rfr) - W*w*np.cos (x))*np.sin(x) - w*w*d*np.cos(x)/ (R-1)

*np.pi

offset = [i*
offsetl = []

d < :

soll += [fsolve (fun
sol2 += [fsolve (fun
sol3 += [fsolve (fun

sol3 += [fsolve (fun
offsetl, soll

offsetl, sol2

(
(

ot (off
W (

Appendix
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Ap peﬂdiX D (ODE Solver Code)

numpy np
matplotlib.pyplot plt
scipy.integrate odeint

pend(y, t, b, m, g, R, w):
theta, omega y

dydt = [omega, k*g*np.sin(a)*np.cos(w*t)*np.cos(theta)/(R-r) - k* (b*omega/m + (g/(R-r)*np.cos(a) -
w*w*np.cos (theta)) *np.sin (theta)) ]

dydt

/ (l+gamma * r*r/((R-r)* (R-r)) * ((R-r)/np.sqrt(r*r-L*L/4) + 1)**2)
@9)

yo = I ]
t = np.linspace (

sol = odeint (pend

plt.plot(t, soll:

Appendix
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Ap peﬂdiX _ (Air Resistance)

Maximal Tangential Velocity: Wmqx - R = 3 m/s

Maximal Tangential Velocity: @4, - R = 0.3 m/s

v2AC
aT='0;—szO.1m-s_2
vEAC
ap = P;_mp ~ 0.001 m-s~?2

Radial acceleration due to air resistance is insignificant

Appendix
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Appendix

— (No-slip)

Ball is rolling without slipping

Appendix

¢
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Appendix G (R¢pm Calculation)

0.15-(0.015+sin(45)*0.0127)
Appendix
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Appendix H (

93

=rror on 3D Printer)

The print accuracy of Anycubic Chiron is 0.05 to 0.3 mm

The positional accuracy of the printer in the X and Y axis is
0.0125 mm while in the Z axis it is 0.0020 mm.

Appendix
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kP = proportional gain
kl = integral gain
kD = derivative gain

Error (Angular Velocity Error) = DesiredAngularVelocity — currentAngularVelocity

Correction term = (kP * Error) - (kD*(Error, - Error, ;) / Timelnterval)

Duty Cycle (owm) = Duty Cycle + Correction Term

Appendix
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Appendix H (Calculation of Incline)

/
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Appendix J (LSODA Algorithm)

High Accuracy low failure rate compared to other ODE solving methods

Appendix
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Appendix K

This is really a 3D problem. You have two normal forces that point towards
the center of the bead and each of those normal forces has a component that
is out of plane of the hoop. Even more, those two forces are rarely equal
because if the bead is moving up, then one normal force is responsible for
speeding it up tangentially and if the bead's angle is decreasing, then the

other edges normal force has to slow it down.

Appendix
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Appendix L (Dynamics )

Higher Angular Velocity = Higher Equilibrium Angle = Higher frequency of

Oscillation about Equilibrium

Appendix



IYPT 2021 99

Decay of Beaa

Constants:

Gravity

Radius

Mass

Moment of Inertia
Initial Conditions:

Time =0

Angle with the Vertical = 0
Termination Condition:
Reaches
Equilibrium/Converges
Decay stops

Obtain initial angle Update dt and ¢

Update Angular

Acceleration

Update angle with

vertical Update Angular Velocity

Appendix
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_xpenmenta\ Setup

Rotating Stand

s A Support Stand

|

Experimental Setup Theoretical Model Key Parameters Conclusion
| | | |
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-xperimental Setup

;LR
. S T
K

Backdrop .'

Experimental Setup Theoretical Model Key Parameters Conclusion
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Rolling Friction

Downhill Rolling
r,m \wb
Vp Ff
D
h\
|
oy
: : PN
Uphill Rolling : 0\ w,

Lagrangian Analysis
] ]

Axis of Rotation

Equations of Motion

d?s

mmz —mgsin6 + F

dw
FfT' - FND = Icma

(Cross, 2016)

Ur = bv

Inclination and Resonance
|
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-Xperimental Setup

Adjustable GoPro
Action Camera

4 ——

Experimental Setup Theoretical Model Key Parameters Conclusion
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xerimnta\ Setup

Experimental Setup Theoretical Model Key Parameters Conclusion
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Maximum angle reached by the rigid spherical bead as a function of different w
Experimental

a
As(w) = Y 1.4
k+1\ , g (b )2 , 12 .
8 os .
Resonance 5 o
Resonance occurs at around 6 radians per second é 06 ) ¢
Angular freqdency for maximum amplitude is 2;104 R

k 2
res — + 1 g — k b i 2 4AngularVeTocity
k \Rcy 2(k+1)m?

@ radians
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Key Parameters

Hoop Radius

Bead Radius Equilibrium Angle

Hoop Angular Velocity

Resonance Angular Velocity

Axial Offset

=== Positive Correlation
Axial Tilt — Negative Correlation

Varied Correlation

Key Parameters Conclusion
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