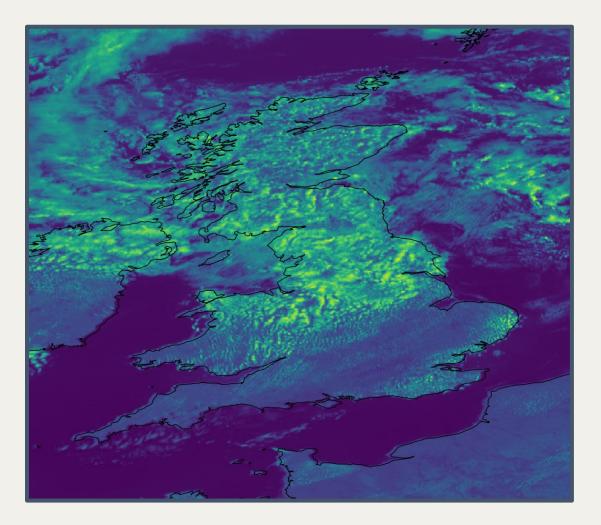


THE CHALLENGE

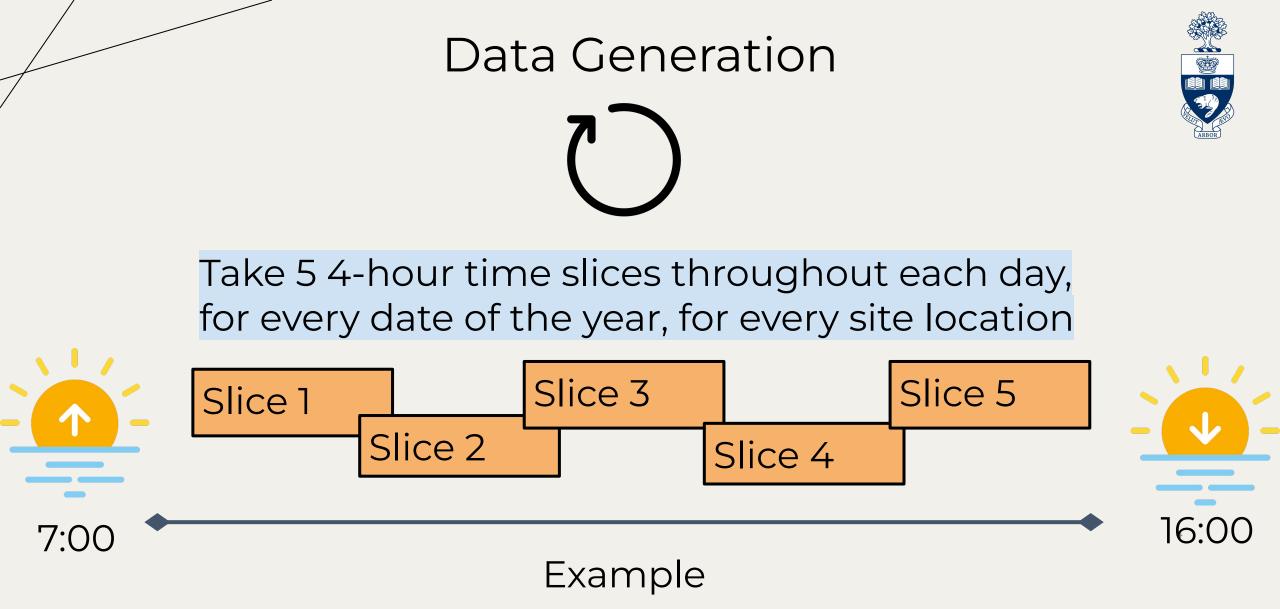
"Develop a model for site-level PV forecasting over the next four hours that is both accurate and performant"

DATASET



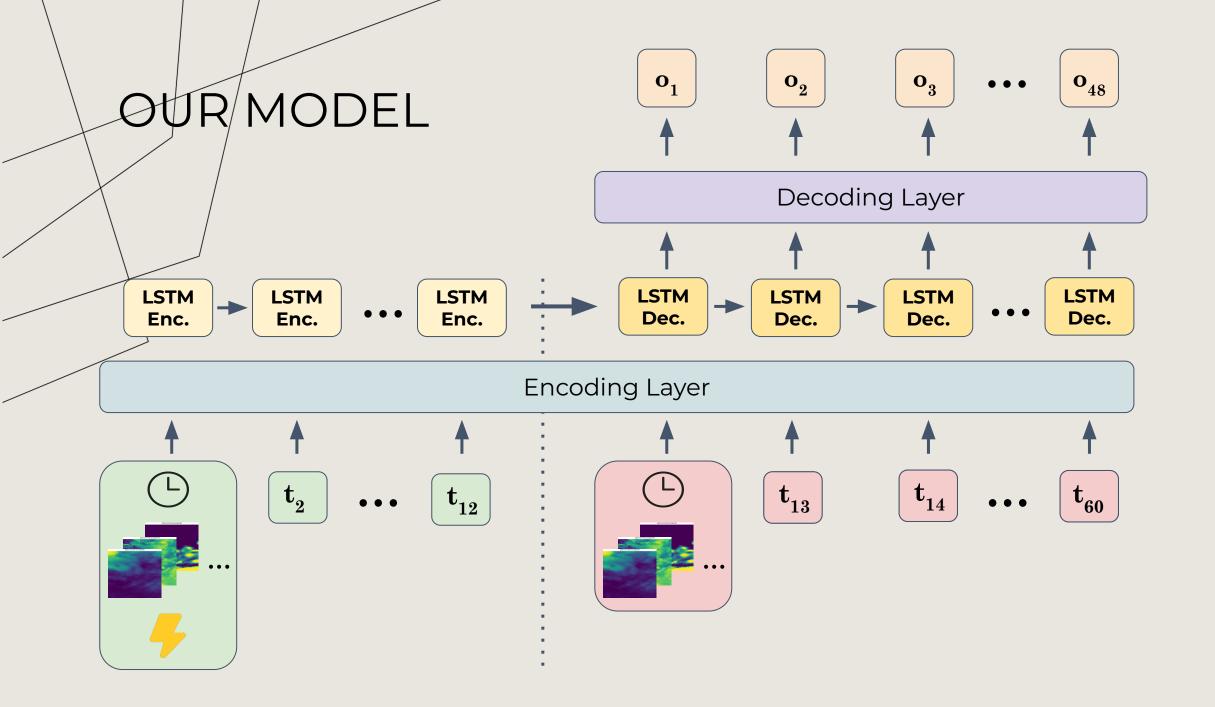
Useful Features

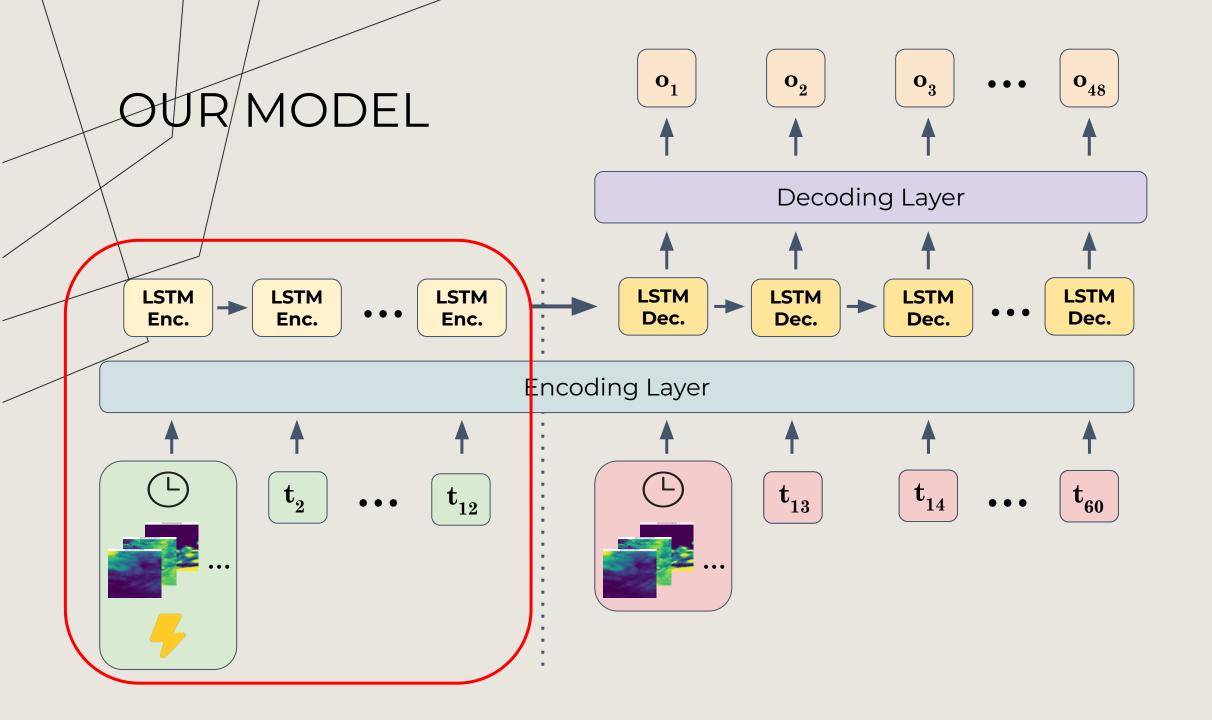
- Past PV
- Weather
 - Diffusive short wave radiation (aswdifd_s)
 - Direct short wave radiation (aswdir_s)
 - Cloud cover % (clch, clcm, clct
 - Relative humidity % (relhum_2m)
- Time
 - Only evaluated between sunrise and sunset

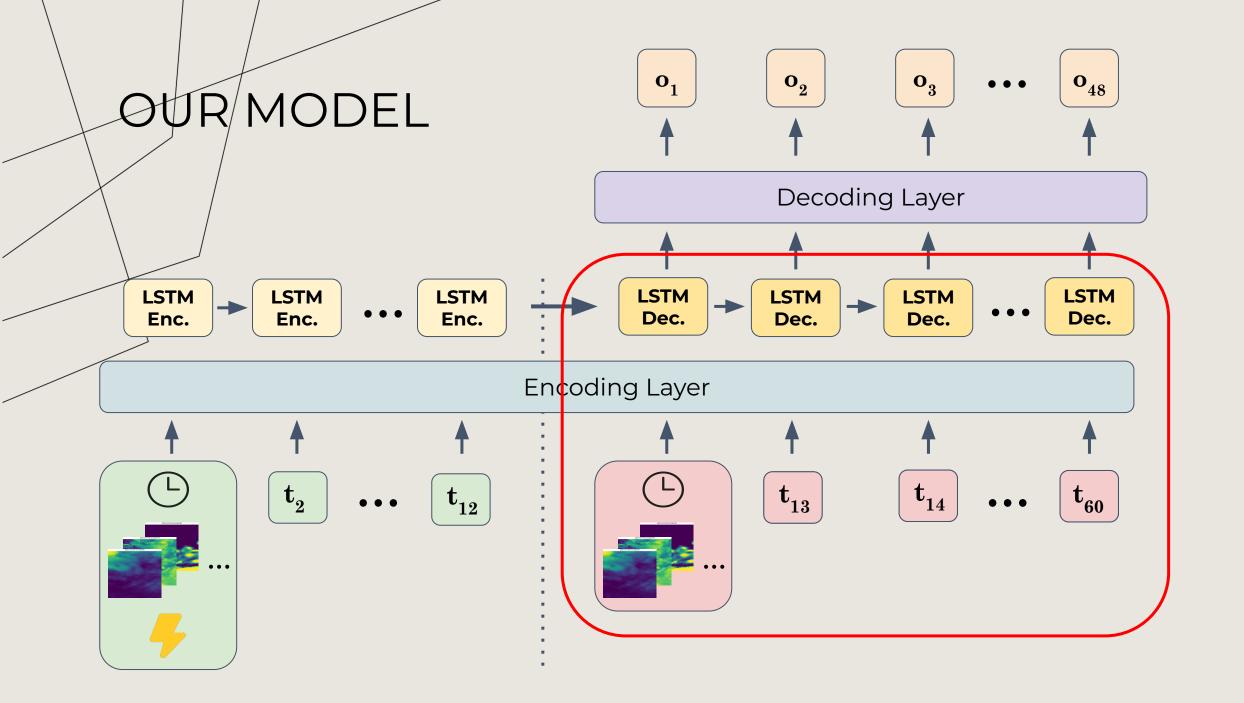


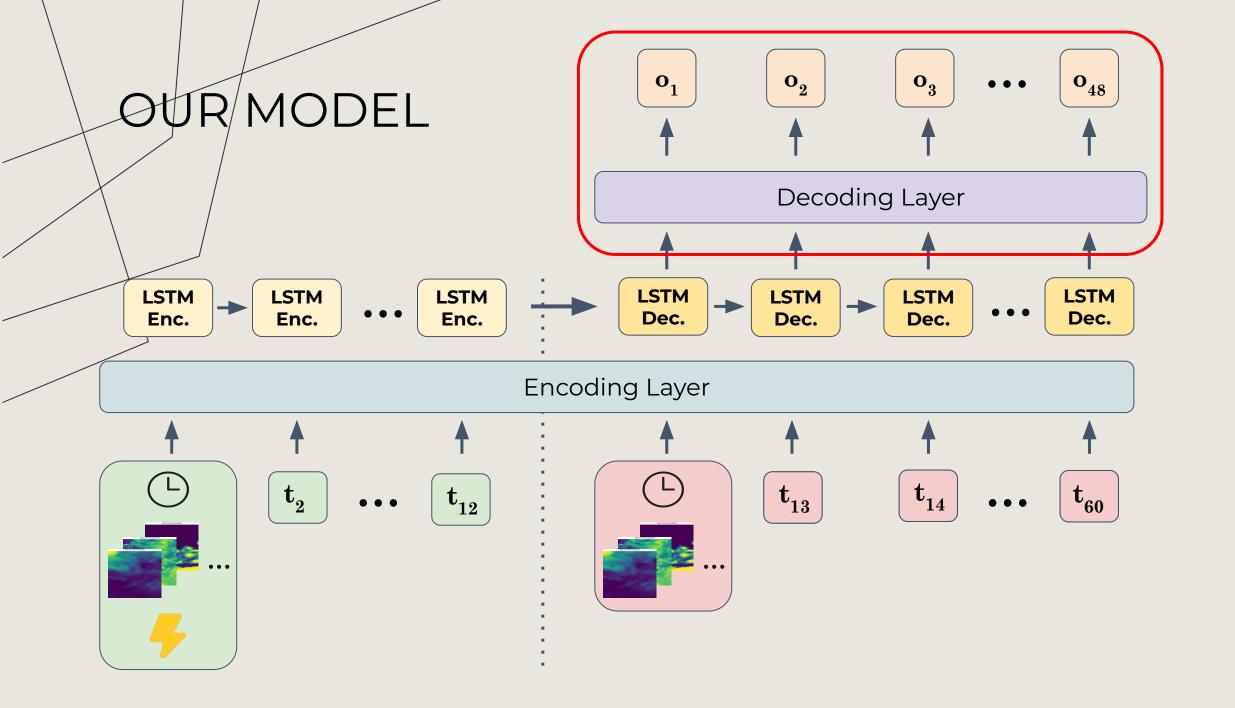
DATA PREPROCESSING





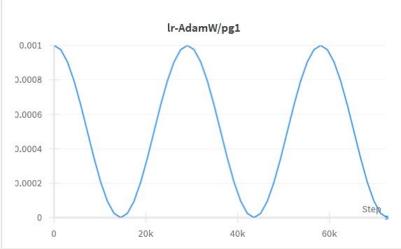


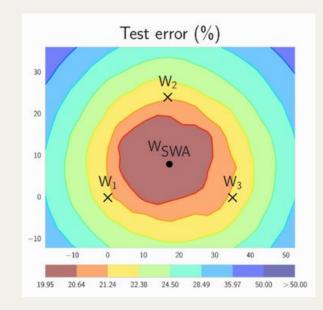




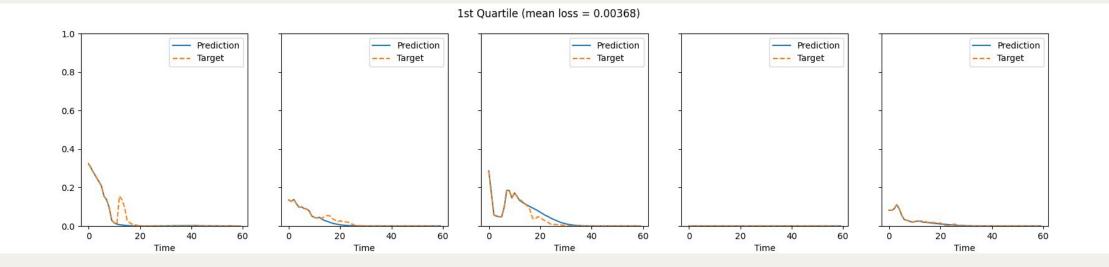
Model Training

- Loss Function: **MAE** Optimizer: **Adam** Training Tricks:
- Cyclic learning rate scheduling
- Stochastic Weight Averaging
- Epochs: 12 ⇒ Training Time: ~7 hours Hardware: Trained on the Cloud – AWS/Vast.ai

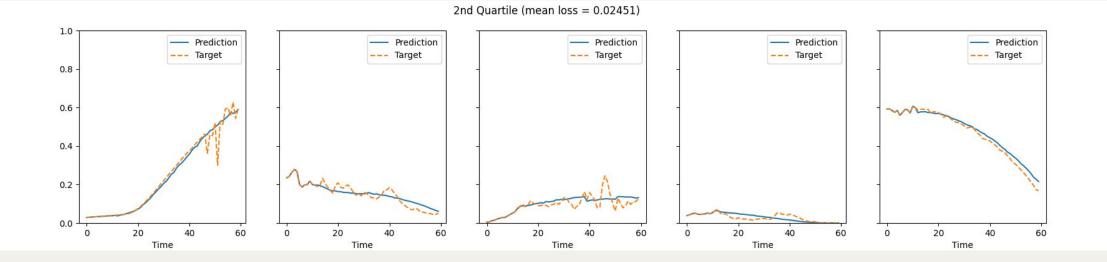




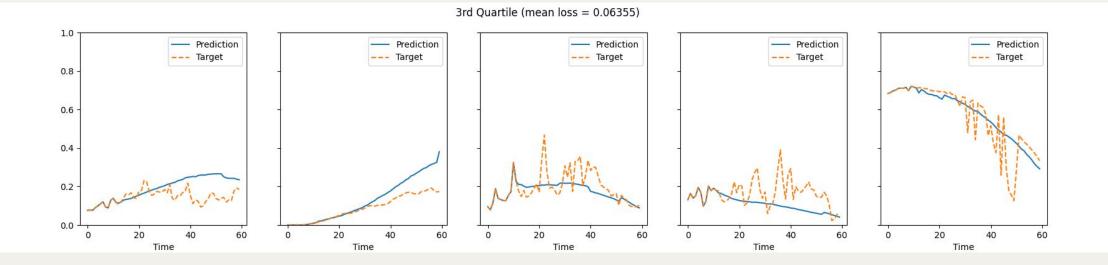
Model Performance: 1st Quartile



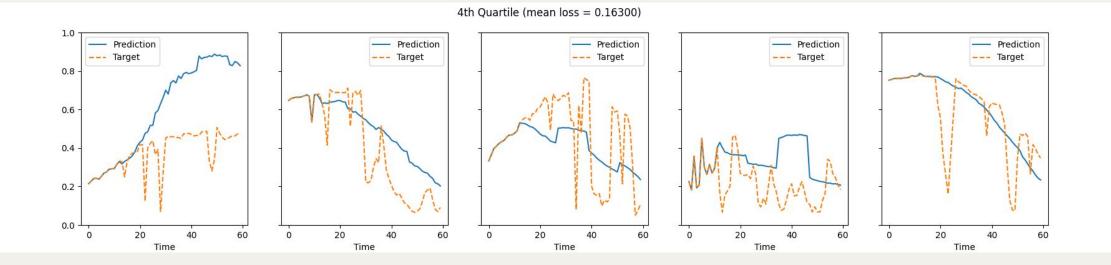
Model Performance: 2nd Quartile



Model Performance: 3rd Quartile



Model Performance: 4th Quartile



Advantages & Limitations

Advantages

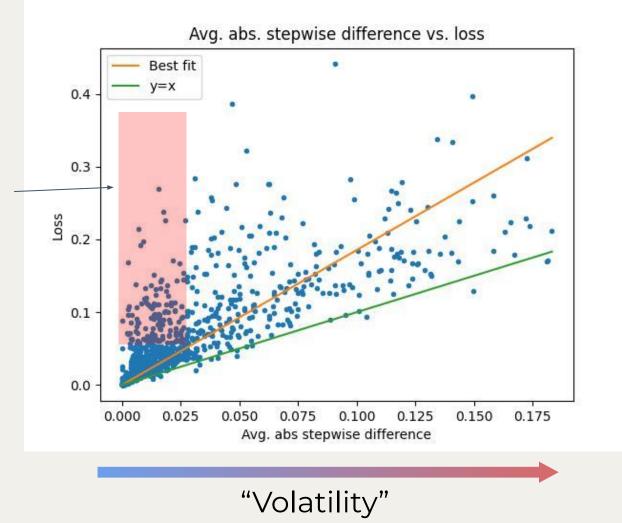
- 1. Lightweight/Highly Deployable
 - a. Faster inference
 - b. Lower Training Time
 - c. Compact
- 2. Simplicity

Limitations

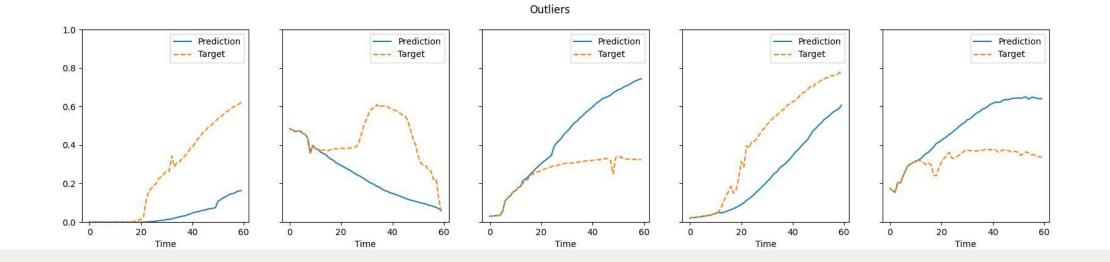
- Only uses weather features, which has low time resolution
- 2. Is poorer at predicting volatile targets

Advantages & Limitations

Region with unexpectedly poor performance



Advantages & Limitations



Other Ideas Tried

Curve Fitting

- Fit a quartic curve to data per each month
- Drawback: Does not account for imagery/site data

K-Nearest-Neighbors

- Match data that is "similar" in various features (month, time, weather, hrv, etc.)
- Drawback: Computational time increases linearly with number of dimensions and data-points used; can become very large.

Sunlight Baseline

- Compute sun angle at time with lat., lon; combine with orientation and tilt to approximate amount of sunlight on solar panel
- Drawback: Does not account for imagery/site data

Expectation Maximization

- Used the same LSTM architecture but also predicted uncertainty; tried variety of distributions (normal, laplace, truncated normal/laplace)
- Drawback: Performance was worse than normal LSTM

Future Improvements

- Explore if larger model size (e.g. more combinations of variables) leads to better performance
 - Utilize more weather variables
- Explore optimal crop location and size
 - most important region not necessarily centered on site due to location of sun in sky
 - larger crops necessary for higher altitude features due to light diffusion
- Incorporate HRV with weather features (e.g. wind speed) to get better time resolution using optical flow

Future Improvements

- Investigate importance of aerosol and non-HRV data
- Predict difference from sunlight baseline
 - Force model to predict high time resolution variations
 - Handle smooth prediction with basic model
- Improve expectation maximization models so that performance is comparable to simpler model
 - Could be used to generate ensemble (take least uncertain predictions at each time step)

Overall Insights

- Importance of feature engineering & normalization
- Difficulty of determining influential parameters – importance of time ⇒ LSTM

Skills Developed

- Data pre-processing
- Setting up organized training modules and designing efficient training methods
- Implementing and evaluating different <u>DL</u> <u>models</u> in PyTorch

Thank You!

richard.hanxu@mail.utoronto.ca

andy.cai@mail.utoronto.ca

brayden.zhang@mail.utoronto.ca

